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ABSTRACT
BACKGROUND: Adolescent depression is a growing public health concern, and neuroimaging offers a promising
approach to its pathology. We focused on the functional connectivity of the amygdala and subgenual anterior
cingulate cortex (sgACC), which is theoretically important in major depressive disorder (MDD), but empirical evidence
has remained inconsistent. This discrepancy is likely due to the limited statistical power of small sample sizes.
METHODS: We rigorously examined sgACC-amygdala connectivity in adolescents and adults with depression using
data from the Healthy Brain Network (n = 321; 170 female), the ABCD (Adolescent Brain Cognitive Development)
Study (n = 141; 56 female), the Boston Adolescent Neuroimaging of Depression and Anxiety study (n = 108; 75
female), and the REST-meta-MDD project (n = 1436; 880 female). Linear mixed models, Bayesian factor analyses,
and meta-analysis were used to assess connectivity.
RESULTS: Our analyses revealed that sgACC-amygdala connectivity in adolescents with MDD was comparable to
that in healthy control individuals, whereas adults with recurrent MDD exhibited reduced connectivity. Resampling
analysis demonstrated that small sample sizes (i.e., n , 30 MDD cases) tend to inflate effects, potentially leading
to misinterpretations.
CONCLUSIONS: These findings clarify the state of sgACC-amygdala connectivity in MDD and underscore the
importance of refining neurocognitive models separately for adolescents and adults. The study also highlights the
necessity for large-scale replication studies to ensure robust and reliable findings.

https://doi.org/10.1016/j.bpsc.2024.11.004
Adolescent depression is an important public health concern
because it occurs at a critical developmental stage, and its
prevalence has increased significantly over the past decade
(1). This disorder often remains undiagnosed and untreated, in
part because its symptoms can vary from the adult criteria,
leading to chronic issues and poor outcomes in adulthood
(2,3). Therefore, improving diagnostic and therapeutic strate-
gies is crucial.

Magnetic resonance imaging (MRI) data, such as resting-
state functional connectivity (FC), is increasingly being used
to explore the brain mechanisms of adolescent depression.
This method has the potential to significantly enhance our
understanding of mental illnesses in adolescents and
contribute to the development of more targeted treatments.
MRI studies have shown critical changes in brain regions and
neural circuits in adolescents with major depressive disorder
(MDD) (4,5). Among key regions that have been implicated in
depression, the subgenual anterior cingulate cortex (sgACC)
and amygdala have been identified as critical hubs (6,7). The
FC between these 2 regions has frequently been reported as
altered in depressed populations (8–12), with these alterations
ª 2024 Society of Biologi
including thos

N: 2451-9022 Biological Psychiatry: Cognitive Neuroscien
being linked to negative affectivity (13), rumination (14), and
treatment responsiveness (15). The sgACC is believed to act
as a gatekeeper (16), mediating communication between
frontal regions and the amygdala. Its dysfunction is thought to
contribute to the persistence of depressive symptoms (17).
Moreover, a meta-analysis of 24 studies found that alterations
in sgACC-amygdala connectivity were most pronounced in
studies involving youths (18). This supports the view that
sgACC-amygdala connectivity plays a critical role in the pa-
thology of depression, particularly during adolescence.

Despite the insights that have been gained from studying
sgACC-amygdala connectivity, the results show significant
heterogeneity, particularly for the adolescent cohort. Reports
range from hypoconnectivity (11,12) to hyperconnectivity (8,9),
and some studies have shown no significant differences
(15,19–21). These inconsistencies are often due to small
sample sizes in neuroimaging studies, which is a more serious
problem in adolescents because data collection is particularly
challenging in this population. This problem is further exacer-
bated by the widely recognized diagnostic heterogeneity in
depression, leading to low statistical power and potentially
cal Psychiatry. Published by Elsevier Inc. All rights are reserved,
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misleading conclusions (22–25). Methodological advances and
data harmonization across multiple sites have enabled large-
scale collaborative neuroimaging projects. These projects,
which involve adolescents with psychiatric conditions, aim to
enhance our understanding of brain development and mental
health, providing increased statistical power and better char-
acterization of diagnostic heterogeneity compared with smaller
samples (25).

Here, we leveraged 3 neuroimaging datasets in adoles-
cents, the HBN (Healthy Brain Network) (26), the BANDA
(Boston Adolescent Neuroimaging of Depression and Anxiety)
study (27), and the ABCD (Adolescent Brain Cognitive Devel-
opment) Study (28), to examine the FC of sgACC-amygdala in
adolescents with MDD. We also analyzed adult MDD data from
the REST-meta-MDD (29) project to determine whether the
effects are specific to adolescents. We used linear mixed
models (LMMs) to test for significant differences. Additionally,
we applied Bayesian factor analysis, which not only assesses
significant differences but also provides evidence for the
absence of differences. Furthermore, we examined how sub-
groups and sample sizes influenced these results.

METHODS AND MATERIALS

Study Samples

We analyzed 3 adolescent datasets [HBN (26), ABCD (28),
BANDA (27)] and 1 adult cohort [REST-meta-MDD (29)]. De-
mographics and clinical information are detailed in the
Supplement, with enrollment protocols and inclusion criteria
described in original studies (26,30–32).

Imaging Acquisition and Preprocessing

MRI data acquisition protocols are detailed in the original ar-
ticles for HBN (26), ABCD (28), BANDA (33), and REST-meta-
MDD (30). See the Supplement for more details on
preprocessing.

HBN data were preprocessed using the DPARSF (34),
closely aligning with the REST-meta-MDD dataset to minimize
discrepancies. The REST-meta-MDD dataset only provided
preprocessed data, using the same pipeline (30).

The ABCD dataset was preprocessed using an updated
version of the Human Connectome Project MRI pipeline (35),
incorporating more advanced techniques than the above pro-
cedure, such as advanced gradient nonlinearity correction
using “topup” (36) and bias field correction using FLIRT and
FreeSurfer. Surface-based analysis was used to precisely map
the cortical surface while preserving topology. Additionally, the
pipeline applied robust noise handling and motion artifact
correction through strict motion censoring (37).

The BANDA dataset used the standard Human Con-
nectome Project pipeline (35), with a notable difference
compared to the ABCD dataset being the exclusion of the
“Preproc” step for further motion correction based on newer
methods, such as Power et al. (37).

Analyses of sgACC-Amygdala FC in Adolescents
With MDD

A region of interest (ROI)-to-ROI analysis was performed using
the total sample HBN dataset to examine sgACC-amygdala FC
760 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
differences between adolescents with MDD and healthy con-
trol participants (HCs). Four sgACC ROIs (3-mm-radius
spheres; bilateral superior 65, 34, 24; inferior 65, 25, 210) (8)
and bilateral amygdala ROIs (Automated Anatomical Labeling
[AAL] atlas regions 41 and 42) formed the sphere-AAL ROIs.
Mean time series were extracted for each ROI, and pairwise
Pearson correlations were calculated and converted to z
scores using Fisher’s r-to-z transformation. To account for
site-related variability, CovBat (38) within DPABI was applied
to harmonize FCs, including age, sex, IQ, and data quality
(mean framewise displacement) as covariates. Group differ-
ences were analyzed using an LMM (30), modeling z-trans-
formed FC values as the dependent variable, with group and
significant demographic differences as fixed effects and site as
a random effect. Cohen’s d was computed to estimate effect

size (d ¼ Tðn1 1n2Þ
ffiffiffiffi

df
p

ffiffiffiffiffiffiffi

n1n2
p ). Multiple comparisons were corrected using

false discovery rate. Bayesian factors were also calculated to
assess the evidence for no group difference using the
BayesFactor package (39), with interpretation based on Jef-
freys’ classification (40).

To reduce biases associated with predefined ROIs, whole-
brain seed-to-voxel FC analyses were also performed using
the 6 ROIs, with group comparisons conducted via 2-sample t
tests, adjusting for significant demographic differences as
covariates (p , .05, uncorrected).

We further examined subgroup differences in sgACC-
amygdala FC by comparing 2 subgroups—64 first-episode,
drug-naïve (FEDN) adolescents with MDD and 43 adoles-
cents with recurrent MDD—to HCs (see the Supplement for
details).

Additionally, several verification analyses were conducted
to validate our results: 1) replicating the analysis using Zalesky-
AAL ROIs from REST-meta-MDD, 2) applying scrubbing
(removal of time points with framewise displacement . 0.5
mm) to control for head motion artifacts, 3) excluding partici-
pants with missing IQ data and using matched subsamples to
minimize demographic confounders, and 4) restricting to HCs
without adverse childhood experiences (ACEs) or parental
history of depression, with matched subsamples ensuring
comparability.

Analyses of sgACC-Amygdala FC in Adults With
MDD

In parallel with the adolescent analysis, we examined sgACC-
amygdala FC abnormalities in adults with MDD and HCs using
the REST-meta-MDD dataset. Only mean time-series data
from 1833 predefined ROIs were available. To be consistent
with the adolescent analysis, we selected ROIs using the AAL
atlas for the bilateral amygdala (regions 41 and 42) and Zale-
sky’s parcellations for the sgACC regions: region 267 (right
superior sgACC), region 581 (bilateral inferior sgACC), and
region 686 (left superior sgACC), referred to as Zalesky-AAL
ROIs. We applied the same ROI-to-ROI analysis and harmo-
nization procedure as was used for the adolescent dataset.
Seed-to-voxel FC analyses were not possible due to dataset
limitations.

We also examined subgroup differences in adults with MDD
by comparing matched subsamples: 232 FEDN patients
versus 232 HCs, 189 patients with recurrent MDD versus 189
uly 2025; 10:759–768 www.sobp.org/BPCNNI
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HCs, and 119 FEDN patients versus 72 patients with recurrent
MDD (no significant demographic differences required
matching for this group). LMM and Bayesian factor analysis
assessed group differences. The participants in each com-
parison group were different because they were selected from
the same sites as the corresponding patients with MDD.
Detailed site and subgroup specifications can be found in Yan
et al. (30).

Additionally, scrubbing was applied for verification.

Evaluating Reproducibility in 2 Independent
Adolescent Cohorts

To test the reproducibility of our HBN results, we conducted
parallel analyses with 2 independent adolescent datasets,
ABCD and BANDA.

For these CIFTI-format datasets, we used Nibabel (41) to
separate cortical and subcortical data. We identified sgACC
ROIs using Connectome Workbench’s (42) surface-closest-
vertex and surface-geodesic-rois commands, creating 3-mm-
radius ROIs. After extracting mean time series from sgACC and
resampled amygdala ROIs, we analyzed group differences
following our previous approach. Because all BANDA partici-
pants were scanned at the same site, harmonization was
applied only to the ABCD dataset.

Meta-Analytic Synthesis of the Results From 3
Adolescent Cohorts

We conducted Bayesian model-averaged meta-analysis
(JASP) (43) across our 3 datasets to enhance statistical power.
Using Cohen’s d and standard errors from demographically
matched samples, we evaluated evidence for null and alter-
native hypotheses with default priors (44). We report averaged
estimates with confidence intervals and Bayes factors for both
hypotheses and heterogeneity.

Sampling Variability

We examined the distribution of group differences across
increasing sample sizes by randomly resampling participants
from the MDD and HC groups (equal numbers from each) with
replacement in the HBN dataset. We performed 1000 resam-
plings at each of 27 sample sizes (10–142 participants/group,
limited by MDD n = 142). Group differences were assessed
using LMM, with sampling variability shown by Cohen’s
d standard deviations.

We selected 1000 resamplings with n = 30 for each group
(total sample size of n = 60) to illustrate how sampling vari-
ability influences group differences in a typically used sample
size in the field. We ranked effect sizes and chose 2 extreme
examples (most positive and most negative) for each ROI-to-
ROI FC to highlight variability.

RESULTS

Sample Composition

There were 142 adolescents with MDD and 179 HCs in the
HBN dataset, 718 adults with MDD and 718 HCs in the REST-
meta-MDD dataset, 77 adolescents with MDD and 64 HCs in
the ABCD dataset, and 54 adolescents with MDD and 54 HCs
in the BANDA dataset. In the HBN dataset, we used the total
Biological Psychiatry: Cognitive Neuroscience and N
sample because only a subsample could achieve demographic
balance after matching procedure. Results were verified using
a well-matched subsample of 70 adolescents with MDD and
70 HCs (see Table S4). Demographically matched samples
were used for all other datasets. See the Supplement for
details.

Independent t tests (age, IQ) and a c2 test (sex) were per-
formed. Adolescents with MDD in the HBN dataset were
significantly older (t319 = 12.3, p , .001), had lower mean IQ
(t319 = 22.0, p = .04), and had a lower percentage of females
(c2

1 = 4.9, p = .03). No significant differences were found in the
other datasets. Detailed demographics are presented in
Table 1.

Intact sgACC-Amygdala FC in Adolescents With
MDD

Using the large-scale HBN dataset, we examined sgACC-
amygdala FC in adolescent depression. Following ROI defini-
tions from previous findings of altered connectivity (8), we
compared 142 adolescents with MDD with 179 HCs. LMM
analysis revealed no significant FC differences between
groups across all ROI pairs (maximum t315 = 1.45, minimum
p = .15) (Figure 1A and Table S1). We also conducted Bayesian
factor analysis to quantify evidence for the null hypothesis (45).
Results showed moderate evidence for intact sgACC-
amygdala connectivity in adolescents with MDD across most
edges, with only 1 edge showing anecdotal evidence
(Table S1).

Whole-brain seed-to-voxel analysis revealed no significant
clusters in either sgACC or amygdala regions, even at a lenient
threshold (p , .05, uncorrected) (Figure 1B).

We also examined sgACC-amygdala FC in MDD sub-
groups, comparing 64 FEDN adolescents with MDD and 43
adolescents with recurrent MDD to HCs. LMMs showed no
significant differences, and Bayesian analysis provided
anecdotal to moderate evidence for the null hypothesis
(Table S1).

Verification analyses included 1) using Zalesky-AAL ROIs
as in the REST-meta-MDD dataset, with no significant dif-
ferences after correcting for multiple comparisons (Figure S1
and Table S2); 2) applying scrubbing for head motion con-
trol, with no significant effects (Table S3); 3) excluding par-
ticipants with missing IQ data and using a well-matched
sample, still with no significant results (Tables S4 and S5);
and 4) comparing demographically matched participants
with MDD to HCs without ACEs or parental depression
history, also showing no significant differences (Tables S6
and S7).

Reduced sgACC-Amygdala FC in Adults With MDD

We examined adults with MDD using the REST-meta-MDD
dataset and compared 718 adults with MDD to 718 HCs.
Unlike in adolescents, a significant decrease in FC was
observed between the inferior sgACC and right amygdala
(t1434 = 22.66, p = .008) (Figure 2 and Table S8).

In subgroup analyses, we compared 232 FEDN adults with
MDD to 232 HCs, 189 adults with recurrent MDD to 189 HCs,
and 119 FEDN adults with MDD to 72 adults with recurrent
MDD (Table S9). FC between the inferior sgACC and right
euroimaging July 2025; 10:759–768 www.sobp.org/BPCNNI 761
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Table 1. Demographic Characteristics of Study Participants

HBN REST-Meta-MDD ABCD BANDA

MDD,
n = 142

HC,
n = 179 p

MDD,
n = 718

HC,
n = 718 p

MDD,
n = 77

HC,
n = 64 p

MDD,
n = 54

HC,
n = 54 p

Sex, Female 85 85 .03 448 432 .39 30 26 .84 41 34 .14

Age, Years 15.2 (2.9) 10.9 (3.2) ,.01a 33.8 (11.4) 34.5 (13.2) .32 10.0 (0.6) 10.0 (0.6) .65 15.6 (0.8) 15.3 (0.8) .08

IQb 104.1 (15.3) 107.4 (13.6) .04 93.6 (18.1) 91.7 (13.8) .48 113.5 (15.1) 116.5 (14.1) .29

Education, Years 12.9 (2.8) 13.1 (3.1) .27

Data are presented as n or mean (SD).
ABCD, Adolescent Brain Cognitive Development; BANDA, Boston Adolescent Neuroimaging of Depression and Anxiety; HBN, Healthy Brain Network; HC, healthy

control participant; MDD, major depressive disorder.
aFalse discovery rate–corrected q , .05.
bIQ was assessed using Full Scale IQ in the HBN and BANDA datasets and the age-corrected composite score from the NIH Toolbox Cognition Battery in the ABCD

dataset.
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amygdala was significantly reduced in adults with recurrent
MDD (t376 = 22.74, p = .006) but not in FEDN adults with MDD
(t462 = 0.69, p = .49). Direct comparisons also showed reduced
FC in recurrent MDD (t189 = 2.9, p = .004), suggesting that
762 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
recurrent MDD primarily contributes to decreased sgACC-
amygdala FC (Table S8).

We also applied scrubbing for aggressive head motion
control, and the results remained consistent (Table S8).
Figure 1. Comparison of subgenual anterior
cingulate cortex (sgACC)–amygdala (AMYG)
functional connectivity (FC) between adoles-
cents with major depressive disorder (MDD) and
healthy control participants (HCs) in the HBN
(Healthy Brain Network) dataset. (A) Region of
interest (ROI)-to-ROI analysis using a linear
mixed model to assess abnormalities in ado-
lescents with MDD. Brain maps show the
selected sgACC and amygdala ROIs (sphere-
AAL ROIs; see the Methods and Materials for
details). Bar charts show mean z-transformed
FC values with error bars representing standard
deviations, and scatter plots below each bar
graph show the distribution of individual data
points. (B) Voxelwise FC analysis using pre-
defined ROIs as seeds (4 in the sgACC and 2 in
the amygdala). Brain maps show regions with
detected connectivity differences between ad-
olescents with MDD and HCs under an uncor-
rected p , .05 threshold. Contours outline the
target regions for each seed for reference. ns
indicates false discovery rate–corrected q . .05.
AAL, Automated Anatomical Labeling; inf, infe-
rior; L, left; ns, not significant; R, right; sup,
superior.
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Figure 2. Comparison of subgenual anterior
cingulate cortex (sgACC)–amygdala (AMYG)
functional connectivity (FC) between adults with
major depressive disorder (MDD) and healthy
control participants (HCs) in the REST-meta-
MDD dataset. Region of interest (ROI)-to-ROI
analysis using a linear mixed model to assess
abnormalities in adults with MDD and sub-
groups. Brain maps display the predefined
sgACC and amygdala ROIs (Zalesky-AAL ROIs).
Bar plots show mean z-transformed bilateral
inferior sgACC–right amygdala FC across par-
ticipants, with error bars representing standard
deviations. Scatter plots below each bar plot
show the distribution of individual data points.

*false discovery rate–corrected q, .05. No other comparisons showed significant differences after FDR correction, so only the significant inferior sgACC–right
amygdala FC is depicted in the bar plots. AAL, Automated Anatomical Labeling; Bi, bilateral; FEDN, first-episode, drug-naïve; inf, inferior; L, left; ns, not
significant; R, right; sup, superior.
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Reproducibility in 2 Independent Adolescent
Cohorts

Given the inherent challenges of collecting adolescent neuro-
imaging data (46), we sought to validate our findings beyond
the HBN dataset’s sample size limitations. We analyzed 2 in-
dependent datasets—ABCD and BANDA—using surface-
based cortical methods (47) because validation across
different populations and methodologies provides robust evi-
dence for reproducibility (48).

In the ABCD dataset (77 adolescents with MDD, 64 HCs)
and the BANDA dataset (54 adolescents with MDD, 54 HCs),
no significant sgACC-amygdala FC differences were found
after correcting for multiple comparisons (Figure 3 and
Table S10). Although a few edges showed significant differences
without correction, these trends were inconsistent across data-
sets, indicating poor reproducibility. Thus, these differences are
likely incidental and do not reflect true FC patterns.

Meta-Analysis of 3 Adolescent Datasets

To summarize the findings from the 3 adolescent datasets and
enhance statistical power, we conducted a Bayesian model-
averaged meta-analysis, providing evidence for both null and
alternative hypotheses.

Across all 8 edges, moderate evidence supporting the null hy-
pothesis was found, with Bayes factor values ranging from 3.61 to
8.39 (Figure 4). Similarly, all credible intervals of the model-averaged
posterior distribution for m crossed 0. Overall, the evidence for the
null hypothesis was stronger, suggesting that sgACC-amygdala
connectivity remained intact in adolescents with MDD.

Bayes factors for heterogeneity (BFfr) across edges ranged
from 0.76 to 2.49, with most edges (6/8) showing anecdotal
evidence for fixed effects, suggesting limited evidence of
substantial heterogeneity across datasets.

Reliable Group Comparison Requires Large Samples

Previous studies with smaller samples of adolescents have
reported significantly reduced (11,12) or elevated (8,9) sgACC-
amygdala FC, whereas our results showed that sgACC-
amygdala FC was intact in adolescents with MDD. To
address this discrepancy, we simulated the effects of inde-
pendent studies by varying sample sizes to titrate group dif-
ferences in the HBN dataset (Figure 5A) (n = 10–142 for each
Biological Psychiatry: Cognitive Neuroscience and N
group). When the sample size was relatively small, the stan-
dard deviation of the effect size was large, suggesting that
effects can be greatly inflated by chance. As the sample size
increased, the standard deviation across resampling
decreased.

To highlight the influence of sampling variability on detect-
ing effects in typical sample sizes (n = 30 for each group, n =
60 total), we ranked the Cohen’s ds and selected 2 extreme
examples for each sgACC-amygdala FC. The results showed
that 2 independent subsamples could reach opposite con-
clusions based on sampling variability alone, as shown in
Figure 5B.

DISCUSSION

In this study, we examined sgACC-amygdala connectivity in
MDD across 3 large-scale adolescent cohorts and 1 adult
cohort. Our results suggest distinct patterns of sgACC-
amygdala FC in adolescents and adults. Specifically, adoles-
cents with MDD had similar sgACC-amygdala FC to HCs, a
consistent finding in both the FEDN and recurrent subgroups.
In contrast, adults with MDD showed a decline in sgACC-
amygdala FC, with the reduction being most evident in
adults with recurrent MDD. Furthermore, our resampling
analysis demonstrated how sample size variability can lead to
the contradictory results that have often been observed in the
MDD literature, thus highlighting the need for large, well-
characterized cohorts for reliable psychiatric neuroimaging
research.

The prevailing opinion in the field suggests that the
abnormal sgACC-amygdala connectivity is closely linked to
depressive states (17,49). Our results suggest that this may not
apply to adolescents with MDD. Compared with adults, the
top-down control of the prefrontal cortex over the limbic sys-
tem, particularly the amygdala, is reduced during adolescence.
This is due to the slower development of the prefrontal cortex
and its weaker connections with the amygdala (50), which re-
sults in poor emotional regulation. Over time, as the prefrontal
cortex matures and these connections strengthen, the ability
to regulate emotions improves. Because the frontoamygdala
connectivity in adolescence is already immature and weak,
even if the depression can dampen sgACC-amygdala con-
nectivity as has been shown in adults with MDD, its effect size
euroimaging July 2025; 10:759–768 www.sobp.org/BPCNNI 763
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Figure 3. Comparison of subgenual anterior cingulate cortex (sgACC)–amygdala (AMYG) functional connectivity (FC) between adolescents with major
depressive disorder (MDD) and healthy control participants (HCs) in the ABCD (Adolescent Brain Cognitive Development) and BANDA (Boston Adolescent
Neuroimaging of Depression and Anxiety) datasets. (A) The selected sgACC and amygdala regions of interest (ROIs). (B, C) ROI-to-ROI analysis was per-
formed in the (B) ABCD dataset and the (C) BANDA dataset. Bar plots show the averaged z-transformed sgACC-amygdala FC across participants, with error
bars representing standard deviations. Scatter plots below each bar plot show the distribution of individual data points. inf, inferior; L, left; ns, not significant; R,
right; sup, superior.
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would be too small to be significantly detected. The immaturity
and weakness of frontoamygdala connectivity in adolescence
may explain the absence of detectable sgACC-amygdala FC
abnormalities in adolescents with MDD. This indicates that
sgACC-amygdala connectivity may provide limited insights
when studying adolescents with MDD. However, in adults with
MDD, we observed a significant reduction. This was only found
in patients with recurrent MDD, not in the FEDN subgroup.
Previous studies have reported reductions (51,52) as well as
nonsignificant changes in sgACC-amygdala FC (53,54). Our
results suggest that the impaired connectivity findings may be
due to recurrent episodes and may serve as a specific con-
dition marker for this subgroup. This finding highlights the
necessity of distinguishing the heterogeneity within the broad
category of depression, particularly emphasizing the impor-
tance of understanding the distinct neurobiological pathways
in subgroups such as recurrent MDD. This differentiation could
provide new insights into the specific neural mechanisms that
underlie these subtypes. Taken together, our results indicate
that adolescents with MDD may not share the same neuro-
cognitive underpinnings as adults. This highlights the need for
a transformative neurocognitive model tailored to adolescents.
Consistent with this, depression typically begins during
764 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
adolescence (55) and differs significantly in symptoms, genetic
architecture, and treatment responses (56,57). Recognizing the
unique developmental trajectory of depression can lead to
more effective interventions and a better understanding of the
disorder’s progression from adolescence to adulthood.

Our resampling analysis highlights that small sample sizes in
psychiatric neuroimaging can lead to misleading conclusions. A
recent neuroimaging meta-analysis of 99 experiments on unipolar
depression demonstrated a lack of significant convergence (58).
Marek et al. (23) showed that replicating brain-behavior associ-
ations in mental health requires thousands of individuals.
Together, these studies and our results argue for prioritizing the
replication and rebuilding of robust neurocognitive models using
large-scale datasets rather than designing new paradigms with
limited samples. Furthermore, simply increasing the sample size
and focusing on the shared characteristics of MDD is not enough.
It is important to recognize that depression is a heterogeneous
disorder that includes a wide range of subtypes with different
characteristics (59). For example, a recent large-scale MDD study
(N = 1801) found that even the best machine learning algorithms
only achieved a diagnostic classification accuracy of 62% (60).
This suggests that no individual-level biomarkers for MDD were
detectable, probably due to the inherent heterogeneity.
uly 2025; 10:759–768 www.sobp.org/BPCNNI
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Figure 4. Meta-analysis of 3 adolescent
datasets. The forest plot displays the observed
effect sizes together with their corresponding
confidence intervals for each study. The bottom
section of the plot presents the meta-analytic
estimates for fixed, random, and averaged
models. The averaged estimate is calculated as
a weighted mean of the fixed- and random-
effect estimates, providing a more comprehen-
sive result by balancing these models. The pie
chart illustrates the Bayes factors (BFs). ABCD,
Adolescent Brain Cognitive Development;
AMYG, amygdala; BANDA, Boston Adolescent
Neuroimaging of Depression and Anxiety; HBN,
Healthy Brain Network; inf, inferior; L, left; R,
right; sgACC, subgenual anterior cingulate cor-
tex; sup, superior.
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Therefore, research needs to identify reliable subtypes with large
datasets to advance clinical translation and truly understand the
heterogeneity within MDD. Our study has begun with a pre-
liminary examination of the episodes. Future research should
focus on improving clinical information in large databases to
deepen our understanding of the underlying mechanisms behind
episodes and refine the classification of subtypes.

Selecting an appropriate preprocessing pipeline for neuro-
imaging studies presents a significant challenge because
different preprocessing choices can substantially influence
group-level findings (61). Recent methodological studies have
shown that preprocessing methods show only moderate
agreement with each other (62), and no single approach provides
perfect control of artifacts (61). Newer techniques like ICA-
AROMA (independent component analysis–automatic removal
of motion artifacts) demonstrate performance comparable to
traditional approaches such as head motion parameter regres-
sion (63). When fields lack consensus on standard methods and
accessible ground truths, reproducibility can be more of an ideal
than a reality (62). To address these methodological concerns,
we evaluated the robustness of our findings using multiple pre-
processing approaches in the adolescent datasets. This
included both comparing different types of pipelines (interpipe-
line) and testing different steps within pipeline (intrapipeline). Our
results remained consistent across these variations. For the
adult dataset, data-sharing policies limited our validation to
Biological Psychiatry: Cognitive Neuroscience and N
within-pipeline comparisons only. In the future, we recommend
that researchers routinely evaluate results across different pre-
processing strategies and encourage data repositories to pro-
vide multiple preprocessing variants to enable such
comprehensive methodological validation.

This study has several limitations. Despite utilizing 3
adolescent neuroimaging datasets, the total sample size is still
less than half of that of the adult dataset. Based on observed
effect sizes in all adult MDD (0.14) and recurrent MDD (0.28), a
sample size of 632 for all MDD or 159 for recurrent MDD in
each group would provide over 80% power at an alpha level of
.05. It is possible that similar effects exist in the adolescent
population, but our sample size may be too small to detect
them. Despite our efforts to test reproducibility across multiple
independent datasets, further replication will require larger
datasets as they become available.

Family history of psychopathology and early-life adversity in
HCs could be important confounders that obscure group dif-
ferences. We attempted to address this by selecting HBN con-
trol participants without a parental history of depression and with
ACE scores below 4, but the resulting sample was small, and no
significant differences were found, despite an effect size of 0.61
in 1 comparison (13 recurrent MDD vs. 13 HC; t = 1.5, p = .15).
Future large-scale studies with stricter inclusion criteria for HCs
are needed to explore this issue further. Our study also suggests
that the type of depressive episode significantly contributes to
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Figure 5. Sampling variability of group differences in subgenual anterior cingulate cortex (sgACC)–amygdala (AMYG) functional connectivity (FC) between
adolescents with major depressive disorder (MDD) and healthy control participants (HCs). (A) Sampling variability assessed through 1000 resamples for each
sample size across 27 bins, with increments of 5 participants per bin. The plot displays the distributions of Cohen’s d for each ROI pair, which were calculated
using linear mixed models. Solid lines denote the mean Cohen’s d across 1000 resamples, while dashed lines indicate the standard deviation across these
subsamples. (B) Illustration of variability with 2 extreme examples at n = 30 each for the MDD and HC groups. Each example shows extreme group differences
where one group exhibits the most positive Cohen’s d and the other group exhibits the most negative Cohen’s d across resamples. p Values are derived from
linear mixed models. inf, inferior; L, left; R, right; sup, superior.
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the heterogeneity in brain connectivity seen in adults with MDD.
However, the specific characteristics of these episodes and their
relationship with sgACC-amygdala FC require more detailed
investigation. There are likely other factors that contribute to
MDD heterogeneity that need exploration. For example, evi-
dence suggests that MDD associated with ACE differs in inci-
dence and pathology compared with non-ACE MDD (64,65). In
HBN, we identified only 8 valid ACE MDD cases, making it
difficult to examine this subtype. Future large-scale functional
MRI studies with rich and diverse subtype information are crucial
for a thorough investigation.
766 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
Another limitation of our study concerns the age composition
of our samples. While we aimed to maximize sample sizes given
the scarcity of adolescent MDD neuroimaging data, this led to
some age range considerations that need to be addressed.
Although the World Health Organization defines adolescence as
ages 10 to 19 years, our ABCD sample included participants
ages 9 to 10 years, representing the transition between pread-
olescence and early adolescence. To address this limitation, we
conducted a supplementary analysis in which we excluded
participants younger than 10 years, which yielded consistent
results (maximum t = 1.49, minimum p = .14). Similarly, while
uly 2025; 10:759–768 www.sobp.org/BPCNNI
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most HBN participants fell within the conventional adolescent
age range, some exceeded this range. To maintain clear devel-
opmental boundaries with our adult dataset while preserving
adequate statistical power, we restricted our HBN analyses to
participants ages 10 to 18 years. These age-restricted analyses
remained consistent (116 MDD vs. 96 HCs, maximum t = 1.24,
minimum p = .22). Although our findings appear robust across
these age ranges, future research with larger samples should
examine more specific developmental periods within adoles-
cence to validate these patterns.

Finally, we acknowledge that a complete understanding of
depression’s neural circuitry requires examining connectivity
between the amygdala and multiple prefrontal regions, particu-
larly the dorsolateral prefrontal cortex, which plays a crucial role
in cognitive control (66). While the dorsolateral prefrontal cortex–
amygdala pathway likely represents another important circuit in
depression alongside sgACC-amygdala connectivity (17), our
study specifically focused on resolving inconsistencies in the
literature regarding sgACC-amygdala connectivity. This targeted
approach allowed us to conduct an in-depth analysis using large
datasets and rigorous statistical methods. Future research
should systematically investigate connectivity patterns between
other prefrontal regions and the amygdala, as well as potential
interactions among these circuits, to build a more comprehen-
sive model of depression’s neural mechanisms and inform tar-
geted interventions.

Conclusions

The current study used multiple large-scale neuroimaging data
to investigate the FC between sgACC and amygdala in MDD.
We found different patterns across age groups: while adults with
recurrent MDD showed reduced connectivity, adolescents with
MDD showed similar levels of connectivity as HCs. This disparity
suggests that mechanisms that are well documented in adults
may not be uniformly applicable to younger populations, thus
highlighting the need to refine neurocognitive models for ado-
lescents and adults separately. Furthermore, our resampling
analysis highlights the importance of large sample sizes to avoid
inflated effects and potential misinterpretations in neuroimaging
studies. These results emphasize the need for robust replication
studies, which are critical to validating the results and providing a
solid foundation for future research.
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